Adatok a Villányi-hegység déli részének pleisztocén végi - holocén idốszaki lepusztulási folyamataihoz

CZIGÁNY SZABOLCS ${ }^{1}$

Bevezetés

Abstract

A hegység felszínfejlődése, és az ezzel kapcsolatos geoökológiai folyamatok ma még kevéssé ismertek. Az elmúlt években kezdtük - mintegy hiánypótlásként - elsősorban a holocén lepusztulási folyamatokat tanulmányozni. Az ezzel kapcsolatos tér- és idóbeli anyagvándorlást ui. alapvetô geoökológiai folyamatnak ítéljük. Ez határozza meg a talajminőség változását, valamint a talajképző kőzet áttelepülését. A pleisztocén végi - holocén idôszaki anyag-átelepülés során sajátos mikroformák is létrejöttek. Ezek viszont speciális mikroklimatikus folyamatokat és környezetüktớl különböző felszíni hidrológiai adottságokat indukálnak. A fenti folyamatok következménye a mikrotérben egymástól eltérő vegetáció és jelenkori talajfejloơdési irány.

Úgy ítéljük meg tehát, hogy a lepusztulúsi-folyamatok egy, általunk ,,geoökológiai láncnak" nevezett folyamatsor megindítói, indukálóí. A lepusztulás jellegétól függ, hogy az egymásra épülő, egymás függvényében kialakuló további folyamatok (mikroklimatikus, talaj- és vegetációfejlődés stb.) milyen irányúak lesznek. Jelenlegi feladatunk a Siklós feletti hegységrész konkrét lepusztulási folyamatainak elemzése, a keletkezett eróziós és akkumulációs formák feltárásaés térképezése kizárólag a lösszel borított térségben. Ezen kívül adatokat kívánunk szolgáltatni a D-i lejtôt építô lösz rétegtani adottságaihoz is.

Kutatástörténet

Az alábbiakban kizárólag a hegység kőzettani, szerkezeti és geomorfológiai kialakulásával kapcsolatos elơzményeket vázoljuk. Ezek adtak ui. segítséget elemzéseinkhez. A rétegtani, ill. szerkezeti kutatások több mint 120 éve kezdődtek (HOFFMANN K. 1872, 1872-1876). Ekkor vált nyilvánvalóvá, hogy a hegység fő tömegét a geomorfológiai szempontból sajátos viselkedésű karbonátos kőzetek alkotják. A rétegek meredek D-i dólését és pikkelyeződését már ekkor felismerték. A század eleji kutatások során (ifj. LÓCZY L. 1912, 1913) öt pikkelyt azonosítottak. A rétegtani vizsgálatok pedig a felszínfejlődés szempontjából figyelemre méltó idôszakot, azaz az alsó és középső malmban réteghiányt állapítottak meg. Ekkor tehát a hegység szárazföld volt és rajta bauxitképződés ment végbe (TELEGDI RÓTH K. 1937). Igaz ugyan, hogy ennek az időszaknak a kora némileg módosult. Mai ismereteink szerint az ősi karsztosodás a felsőjura (malm) titon emelettốl az alsókréta barrémi emeletig tartott (FỤ̈LÖP J. 1966). Az elsố részletes földtani

1
PhD hallgató, Janus Pannonius Tudományegyetem, Természetföldrajzi Tanszék, 7644 Pécs, Ifjúság u. 6.
fejlődéstörténet az 1950-es évek elején készült el (RAKUSZ GY.-STRAUSZ L. 1953). A pleisztocén felszínfejlödés néhány mozzanatát a paleontológiai kutatások tárták fel (KRETZOI M. 1956, 1962). Ekkor váltak ismeretessé a túlnyomórészt függớleges pleisztocén hévízkürtők, amelyekbe hatalmas tömegú gerinces fauna mosódott össze. A hegység pannon utáni domborzatfejlődésének vázlata az 1970-es évek első felében készült el (LOVÁSZ GY. 1973, 1974). A beremendi löszvizsgálatok elsősorban a lösz minőségében visszatükröződő újpleisztocén klímajellegekre igyekeztek adatokat szolgáltatni (CZIGÁNY SZ. 1996). A történeti idókben végbement természeti környezetváltozásokról, beleértve természetesen a lepusztulási folyamatokat is, csupán Villány térségéból történt elemzés (TENGLER T. 1997).

Eredmények

A löszben lejátszódott lepusztulásfolyamatoknak nemcsak Siklós É-i előterében, de a hegységben mindenütt meghatározott területe van, ami természetesen a kôzet térbeli elơfordulásához kötött. Siklós É-i elốterében a Villányi-hegységnek a pleisztocénben legmagasabbra emelkedett térszíne fekszik. Az ún. Tenkes-Csukma csoport átlagosan 340 tszf-i magasságú (I. ábra). Szigetszerúen kiemelkedő legmagasabb pontja (Tenkes-hegy) azonban 407 m tszf-i magasságban helyezkedik el. A terület legfóképpen az ún. csukmai és csak kisebb részben a siklósi pikkelyen fekszik (WEIN GY. 1967). Ny-i része (Tenkeshegy) anizuszi vastagpados mészkő, a K-i szárnya (Csukma-hegy) felsőanizuszi dolomit (RAKUSZ GY.-STRAUSZ L. 1953). Ebben a Ny-K-i irányban 5 km hosszúságban elnyúló térségben a lösz általában 175 m tszf-i magasságig húzódik a lejtőn (2. ábra). Felette sziklalejtô fekszik átlagosan 25% feletti lejtéssel. A két kőzet határán éles lejtôtörés alakult ki a megváltozott kőzetminőség hatására. A lözzös lejtő kezdetben átlagosan 15-17\%-kal lejt D-felé. A sziklalejtő felett a legmagasabb felszín 200-400 m széles és lapos hát, amit szintén lösz fed. Vastagsága egyenlôre ismeretlen. E tekintetben némi támpontot adnak a Csukma-hegy csúcsának közelében épült pincék, amelyek 4-6 m-re mélyülnek a löszbe.

1. ábra. Az elemzett terület kiterjedése a Villányi-hegységben Location of the studied area in the Villány Mountains

2. ábra. Általános lejtőprofil Siklós É-i elốterében. $-1=$ karbonátos kôzetek; 2 = lösz
General slope profile in Northern foreland of Siklós. - $1=$ carbonate rocks; 2 = loess

3. ábra. A Harsányi-hegy lejtôlábi térségének geológiai szelvénye. $-1=$ karbonátos kőzetek; 2 = durva lejtőtörmelék; 3 = iszapos sárga homok; $4=$ lösz
Geological profile on the foothills of Harsány Hill. - 1 = carbonate rocks; 2 = coarse slope detritus; $3=$ silty yellow sand ; $4=$ loess

Az eddigi vizsgálatok során a lösz belső rétegződésére utaló adatokat is sikerült gyûjteni. Ennek ismeretét fontosnak ítéljük, hiszen amint az alábbi adatok jelzik, a lösz nem homogén. Az adatok egyrészt a most elemzett terület közvetlen szomszédságából származnak, másrészt kissé távolabb, a Harsány-hegy D-i lejtőlábi térségének rétegződését tárják fel (3. ábra).

A Harsány-hegy D-i elôtere és lejtôje kőzettani és geomorfológiai szempontból szinte teljes mértékben azonos az általunk elemzett D-i lejtővidékkel. Ennek következtében az ottani fúrásszelvények adatait elfogadhatónak ítéljük Siklós-Máriagyúd É-i térségére is.

Nagyharsány egyik utcájában a 45,7 m-re mélyített fúrás a felszín alatt $2,8 \mathrm{~m}$ vastag zúzalékot tárt fel (1. ábra). A részletes viszonyokat a Községi Vízmú B1 jelú kútjának alábbi szelvényleírása közli:

0-2 m talaj; 2-4,8 m kavicsos agyag, sárga, éles mészkőzúzalék; 4,8-18 m mészkő (húspiros); 18-45,2 m mészkő.

E fúrás adatai tükrében úgy tûnik tehát, hogy azokban a hegységelőtéri térségekben, ahol a sziklalejtő a löszfelszíntől éles lejtőtöréssel határolódik el a lösz alatt, ill. a karbonátos kőzetek felett a szomszédságból származó szilárd lejtôhordalék fekszik, feltehetően a lösszel keveredve. A valószínúsíthető geológiai szelvényt a 3. ábra mutatja.

A lösz belsố tagolódása kitűnően megfigyelhető a D-i lejtőnek támaszkodó löszben is. A Város-hegyre vezetô egyik löszmélyútban (1. áb$r a)$ egymás alatt két, kissé gyengén fejlett pirosas barnás színú paleotalaj tárul fel kb. 165 m tszf-i magasságban és horizontális fekvésben (4. ábra). Ez a két paleotalaj valószínúleg mindenütt, vagy legalábbis gyakran megtalálható a D-i lejtốvidéken, ha az általános denudáció utólag nem pusztította le.

Úgy tűnik, ez a feltárás bővíti eddigi ismereteinket a löszben regionálisan kialakult paleotalajok számát illetően. Eddig ui. a würm kori löszökben csak két paleotalajt írtak le a

5. ábra. A kutatott terület geomorfológiai térképe. $-1=$ hegyhát; $2=$ felszínlépcső; $3=$ eróziós völgy; 4 = domborzati nyereg; 5 =lejtôtörés; $6=$ teraszperem; $7=$ löszmélyút; $8=$ eróziós árok; $9=$ törmelékkúp; $10=$ stabil lejtő; $11=$ instabil lejtő
Geomorphological map of the studied area. $-1=$ interfluvial ridge; $2=$ scarp; $3=$ erosional valley; $4=\mathrm{col}$; $5=$ slope break; $6=$ terrace margin; $7=$ hollow road; $8=$ erosional gully; $9=$ talus cone; $10=$ stable slope; $11=$ unstable slope
szakirodalomban, amelyek regionális kifejlődések (KROLOPP E. 1966). E két talaj alatt a siklósi téglagyár egykori fejtójében korábban két paleotalaj volt látható egymás alatt jellegzetes középbarna kifejlódésben. A két paleotalaj páros közötti magasságkülönbség jelentő́s (4. ábra), így nem valószínú, hogy azok párhumzamosíthatók egymással.

A korábbi malakológiai vizsgálatok tükrében a $100-107 \mathrm{~m}$ tszf-i magasságban fekvő, és két paleotalaj által tagolt siklósi téglagyári lösz valószínúleg würm korinak minő́sül (KROLOPP E. 1966). E két lösz elớfordulással kapcsolatosan elméletileg két lehetooség látszik valószínűnek, aminek tanulmányozása most nem célunk. Lehet, hogy a két paleotalaj páros azonos korú. Ebben az esetben jelentôs újpleisztocén utáni kiemelkedésre utaló bizonyítékkal van dolgunk. Lehet azonban, hogy idősebb lösz tárul fel a hegyoldalban. A közel 70 m magasan elhelyezkedő képződmény korát csak újabb malakológiai vizsgálatok dönthetik el, ill. adhatnak további információkat erról.

A hegység D-i elöterében fekvoo löszfelszín morfográfiailag három zónára tagolódik. Az alsóbb ($100-115 \mathrm{~m}$ a tszf.) csaknem sík, amennyiben É-D-i irányban $1-1,5 \mathrm{~km}$-en alig 10-12 m-t emelkedik. Ehhez csatlakozik egy pár száz m-es zóna (125-150 m a tszf.), ahol az átlagos felszínlejtés 6-8\%. A harmadik zóna (150 m a tszf.) ennél meredekebb, általában $15-17 \%$ és felső része a sziklalejtőnél végződik. Ebben a lejtés szempontjából hármas tagozódású felszínen különbözoó genetikájú eróziós-akkumulációs formák találhatók. Az eróziós formák a legmeredekebb, az akkumulációs képződmények pedig túlnyo-
mórészt a középső zónában találhatók. A löszsíkon csupán a vizsgált térség Ny-i részén fordulnak elő. Térbeli elterjedésüket az 5. ábra mutatja.

A formák kialakulását valószínüleg az újpleisztocén végére, ill. a holocénra kell helyeznünk, hiszen az eróziós formák a würm kori löszben taláhatók, az akkumulációsok pedig a würm kori löszre települnek.

Az eróziós formák egyik csoportját az eróziós árkok képezik (5. ábra). Ezek kizárólag közvetlenül a sziklalejtő alatt, a csekély vastagságú lösz zónájában találhatók. Csaknem mindegyiküknek a sziklalejtớbe vésődött kicsiny vízgyújtốjük van, jelezvén, hogy az onnan érkezett víz lineáris eróziója hozta őket létre. Ezek tehát természetes módon keletkezett formák, és még ma is fejlödnek.

A leggyakoribb eróziós forma azonban részben antropogén hatásra létrejött löszmélyút. Ez igen gyakran a sziklalejtő aljától indul, és a közel sík felszín peremén, általában $120-130 \mathrm{~m}$ tszf-i magasságban szúnik meg. Térképezésük során két változatot lehet a terepen felismerni.

Az egyik lejtőbe vésődött, és felsô végződésénél nincs deráziós fülke. Ezeket teljes egészében antropogén mélyútnak minősítjük, mert kialakulásuk kizárólag a löszmélyútban mozgó víz munkálának és a kocsiforgalomból származó kőzetlazulás eredménye.

A másik változat a lözzlejtóben alig pár m mélyen kialakult deráziós vályú alján képződött, amely hez a sziklalejtốn eróziós páholy csatlakozik. Ezt vegyes típusú mélyútnak minősítjük, mert az eróziós páholyból (valamint a sekély mélységű deráziós vályúból) mint vízgyưjtớbốl jelentốs vízmennyiséget kap.

A fent említett kétféle mélyút típus alatt az esetek döntő többségében törmelékkúpok fekszenek (5.ábra). Ezek minden bizonnyal a pleisztocén után, tehát a holocénban keletkeztek. Kialakulásuk során a felsóbb szintek löszanyaga legfóképpen lineáris úton települt át az „in situ" helyzetben lévôre. Ezeket a képződményeket a nagy csapadékok alkalmával keletkezett időszakos felszíni vízfolyások hozták létre. Fejlődésük fơ időszaka minden valószínűség szerint a holocén nedves klímakilengései voltak.

Térképezésük során megállapítható volt, hogy a deráziós törmelékkúpok különbözó nagyságúak, és eltérớ tszf-i magasságban fekszenek. A Tenkes-hegy a pleisztocénben átlagosan 40 m -rel magasabbra emelkedett, mint a szomszédos Csukma-hegy. A Tenkes alatti törmelékkúpok csúcsa 150-170 m tszf-i magasságban, a Csukma-hegy alatti kúpok csúcsa pedig csak $125-130 \mathrm{~m}$ tszf-i magasságban fekszik. A magasabban fekvő akkumulációs képződmények a fentieken kívül lényegesen nagyobbak, mint az alacsonyabban fekvôk (5. ábra).

A térképezés során az is megállapítható volt, hogy a törmelékkúpok csúcsai különböző abszolút magasságokban fekszenek, de végződésük azonos tszf-i szintben $100-110 \mathrm{~m}$-en, a würm terasz peremén található.

Határozott összefïggés mutatható ki a törmelékkúpok kiterjedése és a felettük kialakult vízgyi̋ijtő terület nagysága között. Ezekben az esetekben az akkumulációs képződményt több mélyútból származó anyag építi fel (5. ábra).

A vizsgált területen 11 db törmelékkúpot sikerült egymástól elkülöníteni. Ezek összterülete $2,2 \mathrm{~km}^{2}$. A lösszel borított felszín - amely a sziklalejtő és a würm kori teraszperem között terül el - méréseink szerint $8,7 \mathrm{~km}^{2}$. Úgy tûnik tehát, hogy a SiklósMáriagyüd közötti hegységelơtér 25\%-án fekszenek akkumulációs képzödmények.

Összefoglalás

A vizsgálatok bốvítették a lösz településviszonyaival kapcsolatos ismereteket a hegység $D-i$ lejtôvidékén, ott ui. újabb, két egymás alatt horizontálisan települő paleotalajt tártak fel, az eddig ismert, és 70 m -rel mélyebben fekvô siklósi téglagyár kettốs paleotalajon kívül (4. ábra).

A megismert újpleisztocén-holocén anyagmozgási folyamatok, ill. keletkezett formák a következók:

- A löszmélyutaknak két típusa alakult ki a löszben. Az egyik az ún. antropogén, a másik az ún. vegyes típusú. Ez utóbbi fejlődésében a csapadéknak is jelentôs a szerepe.
- A löszmélyutak alatt eróziós-deráziós törmelékkúpok épültek (5. ábra), amelyek a részletesen térképezett $8,7 \mathrm{~km}^{2}$-es hegylábfelszín 25%-át fedik le.

IRODALOM

CZIGÁNY SZ. 1997. A beremendi löszfeltárás vizsgálata. - Földr. Ért. 46. 1-2. pp. 97-103.
FÜLÖP J. 1966. A Villányi-hegység kréta időszaki képződményei. - Geologica Hungarica Ser. Geol. 15. pp. 147-162.
HOFFMANN K. 1872-1876. Eredeti mecseki és villányi földtani térképek. 1:28000, - MÁFI térképtár
HOFFMANN K. 1874. Havi jelentés a Villányi-hegység geológiai felvételéról. - MÁFI Adattár
KRETZOI M. 1956. A Villányi-hegység alsó-pleisztocén gerinces faunái. - Geologica Hungarica Series Paleontologica. - MÁFI Músz. Kiadó.
KRETZOI M. 1962. A csarnótai fauna és faunaszint. - Földr. Int. Évi Jel. 1959-ról, pp. 297-343.
KROLOPP E. 1965. A Mecsek-hegység környéki lösz-képződmények biosztratigráfiai vizsgálata. - MÁFI Évi Jel. az 1964. évról, pp. 173-187.
Ifj. LÓCZY L. 1912. A Villányi és Báni-hegység geológiai viszonyai. - Földr. Közl. 36. pp. 672-695.
Ifj. LÓCZY L. 1913. Baranya megye déli hegyvidékének földtani viszonyai. - MÁFI Évi Jel. 1912-rốl.
LOVÁSZ, GY. 1973. Geomorphological Development of the Villány Mountains. - Studia Geomorphologica Carpato-Balcanica, Krakow
LOVÁSZ GY. 1974. Délkelet-Dunántúl felszínfejlôdése. - In: LOVÁSZ GY. (szerk.): Délkelet-Dunántúl geológiája és felszínfejlődése. Baranya megye monográfia sorozat, Baranya Megyei Levéltár, Pécs.
RAKUSZ GY.-STRAUSZ L. 1953. A Villányi-hegység földtana. - MÁFIÉvk., XLI. kötet, 2. füzet pp. 6-13.
TELEGDI RÓTH K. 1937. Jelentés az 1930. és 1931. években a Bakony hegységben és a Villányi-hegységben végzett bauxitkutatásokról. - MÁFI Évi Jel. 1929-1932-ról. pp. 197-213.
TENGLER T. 1997. A természeti környezet antropogén változásai Villány térségében. - Közlemények a JPTE TTK Természetföldrajz Tanszékéról, 4. Pécs
WEIN GY. 1967. Délkelet-Dunántúl hegységszerkezete. - Földt. Közl. 91. pp. 372-395.

by Sz. Czigány

Summary

The investigations extended our knowledge about the settlement of the loess on the southern slopes of the Villány Mountains. A double horizontal paleosol complex is exposed besides the other one in the brickyard of Siklós, which lies 70 metres lower.

The investigated Late Pleistocene and Early Holocene material transport processes are the followings:

- two types of hollow roads formed in the loess deposits. One of them is exclusively man.made while the other one is of mixed type. The rainfall had a significant effect upon development of the second type.
- talus cones covering 25 per cent of the pediment of the mapped area are underlying the hollow roads.

Translated by the author

Dövényi Zoltán (szerk.): Tér-Gazdaság-Társadalom. -Huszonkét tanulmány Berényi Istvánnak. - Magyar Tudományos Akadémia Földrajztudományi Kutatóintézet - Budapest, 1996. 392 p.

Az elmúlt évben a társadalomföldrajzi kiadványok sora újabb értékes kötettel gyarapodott. A tanulmánygyüjtemény kiváló kollégánk, tanárunk, BERÉNYI István 60. születésnapja alkalmából jelent meg az MTA Földrajztudományi Kutatóintézetének gondozásában. Mint a kötet elốszavában is olvashatjuk, nem volt könnyű dolga a kötet szerkesztőjének, hiszen egy ekkora szerzői kör összefogása és koordinálása nem kis erőfeszítést igényel. A megfeszített munkát azonban siker koronázta, s DÖVÉNYI Zoltán szerkesztésében egy nemzetközi szinten is színvonalasnak mondható kiadványt vehet kezébe az olvasó.

A bevezetô részben BERÉNYI István életpályájának fóbb állomásaival ismerkedhetünk meg. Szakmai tevékenységének rövid felvázolása érzékletes képet ad a Széchenyi-díjas professzor több évtizedes, termékeny kutatói munkájáról, oktatói pályafutásáról. Minderről tanúskodik a gazdag bibliográfiai válogatás is, számba véve az ünnepelt tollából kikerült fontosabb publikációkat. E rövid bevezetôt kíséri a magyar és külföldi szerzók által ír 22 tanulmány, melyek társadalomföldrajzi témák gazdag tárházát nyújtják az érdeklődő́nek.

A kötet öt nagyobb témakörbe sorolható publikációkat tartalmaz, melyek egyben körüljárják azt a szakmai mezốt, ahol BERÉNYI István tevékenykedett és tevékenykedik ma is:

A Városföldrajzi tanulmányok c. fejezetben - amely egyébként legterjedelmesebb része a tanulmánygyűjteménynek - nyolc írást olvashatunk, ezek közül öt Budapest társadalomföldrajzába nyújt bepillantást.

Elisabeth LICHTENBERGER a főváros társadalmi térszerkezetének átalakulását elemzi bevezető tanulmányában. Egyrészt megismerkedhetünk a városszerkezet rendszerváltozás elốti modelljével, másrészt a bérlakások privatizációjának, valamint a lakásosztályok helyzetének részletes elemzésén keresztül a szerző felvázolja Budapest új, átalakulási modelljét.

Georg KLUCZKA a budapesti belváros átalakuló funkcióiról ír részletesen. Sorra veszi a lakófunkció, a feldolgozóipar, a kiskereskedelem, a média és hirdetések, valamint a pénzügyi, jogi és idegenforgalmi intézmények helyzetét a cityben. A főváros V . kerületében kilenc speciális városnegyed kialakulásának, formálódásának lehetünk tanúi, melyek közül egyesek egymásba folynak, mások viszont kifejezetten elkülönülnek egymástól. A kutatási eredményeket fekete-fehér és színes tematikus térképek teszik szemléletessé.

A fenti két tanulmányhoz szorosan kapcsolódik KOVÁCS Zoltán és Reinhard WIESSNER közös publikációja a fơvárosi lakáspiac átalakulásának fóbb jellemzôiről, ill. azok városszerkezeti következményeiról a belsố városrészekben. A lakáspiac rendszerváltozás elốtti jellemzốinek rövid felvázolása után a szerzók a rendszerváltozás utáni állapotokat elemzik részletesen, kiemelve a vállalkozói szféra expanziójának és az állami lakások privatizációjának a hatását. A lakáspiac átalakulása jelentős változásokat hozott a lakásárak változásában, a lakásprivatizáció tér-és idơbeli megoszlásában, a városfelújítás ütemében, a lakásmobilitásban és a szegregációs

